首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7620篇
  免费   2138篇
  国内免费   1782篇
测绘学   58篇
大气科学   216篇
地球物理   984篇
地质学   8024篇
海洋学   677篇
天文学   11篇
综合类   283篇
自然地理   1287篇
  2024年   24篇
  2023年   172篇
  2022年   386篇
  2021年   482篇
  2020年   395篇
  2019年   510篇
  2018年   443篇
  2017年   559篇
  2016年   585篇
  2015年   493篇
  2014年   613篇
  2013年   623篇
  2012年   569篇
  2011年   541篇
  2010年   471篇
  2009年   599篇
  2008年   516篇
  2007年   555篇
  2006年   446篇
  2005年   413篇
  2004年   324篇
  2003年   287篇
  2002年   248篇
  2001年   187篇
  2000年   165篇
  1999年   187篇
  1998年   121篇
  1997年   131篇
  1996年   97篇
  1995年   76篇
  1994年   80篇
  1993年   55篇
  1992年   70篇
  1991年   38篇
  1990年   16篇
  1989年   16篇
  1988年   15篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   6篇
  1979年   5篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
981.
X-ray diffraction analysis of black shale of Upper Triassic Member Chang 7 of the Yanchang Formation in southeastern Ordos Basin showed that black shales were deposited in brackish, strongly reducing, semi-deep-deep lacustrine facies, and mainly composed of quartz, feldspar, carbonate (dolomite), clay minerals (illite and il- lite/smectite) and a certain amount of pyrite. The mineral composition characteristics of this set of black shales are similar to those of highly productive shale gas in North America, for example shallow burial, low clay mineral and abundant brittle mineral, so the strata are conducive to the development of cracks and fractures. Thus, this area is favorable for shale oil/gas exploration and development.  相似文献   
982.
Based on the palynological data from Well Ta-19-36 and Well Ta-19-37 in the Ta'nan Sag, and Well Ta-22-1 and Well Ta-21-1 in the Bayin Gobi Sag, a spore-pollen assemblage from the Damoguaihe Formation is named as Cicatricosisporites minutaestriatus- Aequitriradites spinulosus-Protopinus sp. assemblage in the Tamutsag Basin, Mongolia. The assemblage is characterized by abundant gymnosperm pollen and diverse fern spores, counted 46.35%–65.57% and 34.43%–52.58% in percentage respectively. Among the gymnosperm pollen, Pinuspollenites sp.(2.66%–16.94%), Protopinus sp.(0–11.38%) and Protopicea sp.(0–10.81%) are dominant; and Alisporites sp., Cerebropollenites sp., Podocarpidites sp., and Abietineaepollenites sp. are common. Some important elements, such as Chasmatosporites sp., Callialasporites prominulus, Parvisaccites sp., Parcisporites sp., Jiaohepollis cf. annulatus, J. bellus, J. verus, Polycingulatisporites sp., Schizaeoisporites certus, Classopollis annulatus are seen. Within the fern spores, Osmundacidites wellamanii(0.85%–4.93%), Appendicisporites sp.(0–4.45%), Baculatisporites comaumensis(0.80%–2.87%), Cicatricosisporites sp.(0.51%–2.66%), C. minor(0–2.14%), Foraminisporis asymmetricus(0–2.40%), Aequitriradites sp.(0– 2.19%) and Cyathidites minor(0–2.13%) are dominant; and some specie of Densoisporites, Cooksonites, Impardecispora, Pilosisporites, Schizaeosprites, Fixisporites, Leptolepidites, Trilobosporites, Kuylisporites, Klukisporites, Hsuisporites, Couperisporites, Maculatisporites are seen. The angiosperm pollen are rare in the assemblage, characterized by Clavatipollenites sp.(0–0.80%) and Songipollis sp.(0–0.27%). The geological age of the Damoguaihe Formation is assigned to Hauterivian – Barremian of Early Cretaceous according to the palynological data, due to the fact that there existed a lot of diverse spores of the family Schizaeaceae and prosperous gymnosperm saccat pollen which the corpus and sacci are differentiated completely, and the presence of early angiosperm pollen of Clavatipollenites. However, the zircon U-Pb isotopic dating of the volcanic rocks in the Nantun Formation indicated that the overlying strata of the Nantun Formation, i.e. the Damoguaihe Formation must be younger than 127.0±2.0–137.9±1.5 Ma. This is consistent with the palynological data. Furthermore, the vegetation reconstructed on the palynological data of the Damoguaihe Formation is conifer forest with shrubs and grassland, belonging to the semi-humid or humid middle to south subtropical climate. Moreover, three new species, namely Biretisporites punctatus sp. nov., Chasmatosporites reticulates sp. nov. and Concentrisporites contractus sp. nov. are described here.  相似文献   
983.
With the analysis of the sources and formation mechanism of the clay minerals in the sediment core from the Dalianhai lake in the Gonghe Basin,northeastern Tibet-Qinghai Plateau,clay mineral composition proxies,grain-size and carbonate contents have been employed for high-resolution study in order to reconstruct East Asian Summer Monsoon (EASM) over the northeastern Tibet-Qinghai Plateau during the lastdeglacial.The study also extended to establish a relationship between vegetation cover changes and erosion during the last 14.5 ka with pollen record and clay mineral proxies.Smectite/kaolinite and smectite/(illite+chlorite) ratios allow us to assess hydrolysis conditions in lowlands and/or physical erosion process in highlands of the Gonghe Basin.Before 12.9 Cal ka BP,both mineralogical ratios show low values indicative of strong physical erosion in the basin with a dominant cold and dry phase.After 12.9 Cal ka BP,an increase in both mineralogical ratios indicates enhanced chemical weathering in the basin associated with a warm and humid climate.The beginning of Holocene is characterized by high smectite/(illite+chlorite) and smectite/kaolinite ratios that is synchronous as with deposition of many peat laminae,implying the best warm and humid conditions specifically between 8.0 to 5.5 Cal ka BP.The time interval after 5.0 Cai ka BP is characterized by a return to high physical erosion and low chemical weathering with dry climate conditions in the basin.Comparing variations of clay mineral assemblages with previous pollen results,we observe a rapid response in terms of chemical weathering and physical erosion intensity to a modification of the vegetation cover in the basin.  相似文献   
984.
On the basis of field observations, microscopic thin-sections and laboratory data analysis of ten faults in Xuanhan County area, northeastern Sichuan Basin, central China, the internal and megascopic structures and tectonite development characteristics are mainly controlled by the geomechanical quality in brittle formation of the Changxing-Feixianguan Formation. The fluid transportation performance difference between the faults formed by different geomechanics or different structural parts of the same fault are controlled by the mcgascopic structure and tectonite development characteristics. For instance, the extension fault structure consists of a tectonite breccia zone and an extension fracture zone. Good fluid transportation performance zones are the extension fracture zone adjacent to the tectonite breccia zone and the breccia zone formed at the early evolutionary stage. The typical compression fault structure consists of a boulder-clay zone or zones of grinding gravel rock, compression foliation, tectonite lens, and dense fracture development. The dense fracture development zone is the best fluid transporting area at a certain scale of the compression fault, and then the lens, grinding gravel rock zone and compression foliation zones are the worst areas for hydrocarbon migration. The typical tensor-shear fault with a certain scale can be divided into boulder-clay or grinding gravel rock zones of the fault, as well as a pinnate fractures zone and a derivative fractures zone. The grinding gravel rock zone is the worst one for fluid transportation. Because of the fracture mesh connectivity and better penetration ability, the pinnate fractures zone provides the dominant pathway for hydrocarbon vertical migration along the tensor-shear fault.  相似文献   
985.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   
986.
正Identification of the favorable salt-and potash-forming layer,we still mainly rely on logging interpretation and coring verification.However,we both know that the continuously carbonate platform is cyclical growing.It has recorded valuable information about the phase transition of carbonate rocks,which were synchronized with the relative sea-level cycles.This paper presents a fast and  相似文献   
987.
正There are significantly different origins and mineralizations among various lithium-rich brines of the world.As for Clayton Valley,Nevada,the data and interpretations recently presented suggest that the model  相似文献   
988.
正1 Introduction Mengla Basin is a sub-basin in southern evaporitebearing Lanping-Simao Basin.There are many salt springs in the basin.In 2012,11 spring samples were collected for analyses of chemistry and boron,hydrogen and oxygen  相似文献   
989.
正Evaporites with gigantic thickness had been developed in Kuqa Basin from Paleocene to early Miocene,and the sediment thickness changed from tens to thousands of meters.By 3D mine software,spatial distribution model of  相似文献   
990.
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号